
ЗАДАНИЕ ПО ФИЗИКЕ ВАРИАНТ 27101 для 10-го класса

1. Точечный источник света S, плоское зеркало 3, собирающая тонкая линза \mathcal{J} и экран \mathcal{J} расположены так, как показано на рисунке. Как изменится освещенность в точке \mathcal{A} экрана, если плоское зеркало подвинуть параллельно самому себе влево на расстояние d?

Ответ: Освещенность не изменится.

2. Ветрогенератор вырабатывает электроэнергию при любой скорости вращения лопастей. Мощность такого устройства пропорциональна квадрату скорости ветра. Один ветрогенератор развивает мощность 1 МВт при скорости ветра 12 м/с. Какую суммарную мощность будут развивать 10 параллельно соединенных генераторов при скорости ветра 2 м/с?

Ответ: $N_{10} = 280 \text{ кВт.}$

3. На конце нерастянутой пружины закрепили груз массой m и отпустили. В процессе колебаний в некоторый момент времени потенциальная энергия упругой деформации пружины равна W_1 , а модуль ускорения груза равен a_1 . Через некоторое время энергия пружины стала равна W_2 , а модуль ускорения груза равен a_2 . Известно, что $W_2 = 25W_1$, а $a_2 = a_1/2$. Определите модуль и направление ускорений \vec{a}_1 и \vec{a}_2 . Затухание колебаний не учитывать.

Ответ: либо оба ускорения направлены вниз, причем $a_{2\downarrow} = \frac{4}{9}g$, $a_{1\downarrow} = \frac{8}{9}g$; либо a_1 направлено вниз, a_2 направлено вверх, причем $a_{2\uparrow} = \frac{4}{11}g$, $a_{1\downarrow} = \frac{8}{11}g$

4. Скоростной поезд «Ласточка» проходит расстояние 30 км от станции «Крюково» до станции «Подсолнечная» за 20 минут. Поезд набирает ход с постоянным ускорением, потом некоторое время едет с постоянной скоростью 120 км/час, затем движется равнозамедленно до остановки. Определите, какое расстояние проходит поезд с максимальной скоростью, если ускорения разгона и торможения различны.

Ответ: 20 км.

5. В начале февраля в НИУ «МЭИ» проходила инженерная конференция школьников «Потенциал». В секции «Экспериментальные методы исследования физических явлений» первое место заняла работа, посвященная гидроудару. Это опасное явление возникает, например, при резкой остановке водяного потока в трубе. Повышение давления жидкости может привести к разрушению трубы. Предположим, что небольшой камешек случайно оказался в трубе и неожиданно застрял в ней, полностью перекрыв течение воды. При какой наибольшей скорости водяного потока труба, рассчитанная на максимальное давление $p_{\text{max}} = 25$ атмосфер, может выдержать гидроудар? Плотность воды $\rho = 1000 \text{ кг/м}^3$, скорость звука в воде $v_{\text{зв}} = 1250 \text{ м/c}$.

Omsem: $V = \frac{P_{max}}{\rho V_{3B}} = 2 \frac{M}{c}$.