
ЗАДАНИЕ ПО ФИЗИКЕ ВАРИАНТ 27111 для 11-го класса

1. Изобразите вольт-амперную характеристику схемы из трех одинаковых диодов, представленной на рисунке 1, если вольт-амперная характеристика одного диода имеет вид, представленный на рисунке 2. Объясните свои построения.

Ответ: Итоговая вольт-амперная характеристика приведена на рисунке.

2. Скоростной поезд «Ласточка» проходит расстояние 30 км от станции «Крюково» до станции «Подсолнечная» за 20 минут. Поезд набирает ход с постоянным ускорением, потом некоторое время едет с постоянной скоростью 120 км/час, затем движется равнозамедленно до остановки. Определите, какое расстояние проходит поезд с максимальной скоростью, если ускорения разгона и торможения различны.

Ответ: 20 км.

3. В начале февраля в НИУ «МЭИ» проходила инженерная конференция школьников «Потенциал». В секции «Экспериментальные методы исследования физических явлений» первое место заняла работа, посвященная гидроудару. Это опасное явление возникает, например, при резкой остановке водяного потока в трубе. Повышение давления жидкости может привести к разрушению трубы. Предположим, что небольшой камешек случайно оказался в трубе и неожиданно застрял в ней, полностью перекрыв течение воды. При какой наибольшей скорости водяного потока труба, рассчитанная на максимальное давление $p_{\text{max}} = 25$ атмосфер, может выдержать гидроудар? Плотность воды $\rho = 1000 \text{ кг/м}^3$, скорость звука в воде $v_{\text{зв}} = 1250 \text{ м/с}$.

1000 кг/м³, скорость звука в воде
$$v_{\rm 3B} = 1250$$
 м/с.

Ответ: $V = \frac{P_{max}}{\rho V_{\rm 3B}} = \frac{25 \cdot 10^5}{1000 \cdot 1250} = 2 \frac{\rm M}{\rm c}$.

4. На конце нерастянутой пружины закрепили груз массой m и отпустили. В процессе колебаний в некоторый момент времени потенциальная энергия упругой деформации пружины равна W_1 , а модуль ускорения груза равен a_1 . Через некоторое время энергия пружины стала равна W_2 , а модуль ускорения груза равен a_2 . Известно, что $W_2 = 25W_1$, а $a_2 = a_1/2$. Определите модуль и направление ускорений \vec{a}_1 и \vec{a}_2 . Затухание колебаний не учитывать.

Ответ: либо оба ускорения направлены вниз, причем $a_{2\downarrow} = \frac{4}{9}g$, $a_{1\downarrow} = \frac{8}{9}g$; либо a_1 направлено вниз, a_2 направлено вверх, причем $a_{2\uparrow} = \frac{4}{11}g$, $a_{1\downarrow} = \frac{8}{11}g$

5. Незаряженный металлический шар радиусом R_1 установлен на непроводящей изолированной подставке на столе. Металлический шар радиусом R_2 закреплен на изолированной ручке и имеет заряд q_2 . Шары приводят в соприкосновение, после чего второй шар удаляют на достаточно большое расстояние от первого. Потенциал второго шара оказывается равным φ_2' . После этого второй шар снова заряжают зарядом q_2 и касаются первого. Определите потенциал первого шара φ_1^∞ после многократного повторения этих действий.

$$\underline{\textit{Omsem:}} \ \phi_{1}^{\infty} = q_{2} \ \frac{q_{2} - \phi_{2}' 4\pi \varepsilon_{0} R_{2}}{\phi_{2}' 16\pi^{2} \varepsilon_{0}^{2} R_{1} R_{2}}$$